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Abstract
Known-item search (KIS) involves only a single search target, mak-
ing relevance feedback—typically a powerful technique for effi-
ciently identifying multiple positive examples to infer user in-
tent—inapplicable. PicHunter addresses this issue by asking users
to select the top-k most similar examples to the unique search tar-
get from a displayed set. Under ideal conditions, when the user’s
perception aligns closely with the machine’s perception of simi-
larity, consistent and precise judgments can elevate the target to
the top position within a few iterations. However, in practical sce-
narios, expecting users to provide consistent judgments is often
unrealistic, especially when the underlying embedding features
used for similarity measurements lack interpretability. To enhance
robustness, we first introduce a pairwise relative judgment feed-
back that improves the stability of top-k selections by mitigating
the impact of misaligned feedback. Then, we decompose user per-
ception into multiple sub-perceptions, each represented as an inde-
pendent embedding space. This approach assumes that users may
not consistently align with a single representation but are more
likely to align with one or several among multiple representations.
We develop a predictive user model that estimates the combina-
tion of sub-perceptions based on each user feedback instance. The
predictive user model is then trained to filter out the misaligned
sub-perceptions. Experimental evaluations on the large-scale open-
domain dataset V3C indicate that the proposed model can optimize
over 60% search targets to the top rank when their initial ranks
at the search depth between 10 and 50. Even for targets initially
ranked between 1,000 and 5,000, the model achieves a success rate
exceeding 40% in optimizing ranks to the top, demonstrating the en-
hanced robustness of relevance feedback in KIS despite inconsistent
feedback.
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1 Introduction
Relevance feedback [19, 21, 28, 30] is widely applied in interactive
video retrieval to capture human subjectivity and refine search
queries. In cases where there are numerous positive examples
within the search space, i.e., the ad-hoc video search, users can
contribute by submitting relevant examples or indicating signif-
icance ratings to assist the system in aligning with their search
goals. Conversely, in known-item search (KIS), where only a unique
target item exists, user-labeled positive examples are typically un-
available. PicHunter [2–4], a Bayesian-based relevance feedback
framework for KIS, addresses this by utilizing partially similar, yet
not entirely positive, examples to locate the search target. Users
provide judgments on which videos are “closer” to the target, fol-
lowing a heuristic that videos more similar to selected ones are
likely closer to the target than non-selected videos. The probability
of relevance is then updated exponentially based on the distance
difference between candidate videos and those that have been se-
lected versus non-selected ones. Despite the surge in video volume,
the exponential update function effectively refines the search space,
improving the target’s ranking. Under the assumption that users
consistently align with the machine by providing accurate and pre-
cise judgments, PicHunter [2–4] is capable of promoting the target
to the top position within seven iterations. However, assuming
users can consistently make precise judgments is often impractical.
To address this, PicHunter implements a “soft” approach by itera-
tively updating a probability distribution over all candidates, thus
pushing the search target closer to the top. However, the system
still has high sensitivity, as inconsistent user judgments may result
in the target being ranked lower in the list.

The rapid growth in video content and the widespread adoption
of embedding-based retrieval methods further complicate the ap-
plication of relevance feedback in KIS. As video datasets expand to
cover broader domains, videos conveying similar semantics tend to
exhibit unlimited and unpredictable variability in appearance [20].
This variability can lead to inconsistent user judgments, particu-
larly when candidate videos possess subtle, non-comparable differ-
ences. Furthermore, the dominance of embedding representations
in cross-modality retrieval amplifies challenges in achieving consis-
tent judgments. While explainable features like texture, color, and
illumination [2] facilitate user judgments, embeddings, designed to
align with textual queries, often result in representation distances
that are difficult for users to interpret and compare. This mismatch
between user perception and machine interpretation can lead to
misalignment.
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To address these limitations, we propose a novel approach that
enhances the robustness and effectiveness of relevance feedback
in KIS. Our method decomposes user perception into multiple sub-
perceptions, each represented within an independently trained
embedding space. Although users may struggle to provide judg-
ments that always align with a single embedding space, they are
more likely to agree with one or several of these representations.
Accordingly, we develop a predictive user model that estimates the
user’s perceptual alignment within each embedding space based on
the query, the current search state, and the user’s interaction his-
tory. Specifically, we propose pairwise judgments, allowing users
to identify the video closer to the target within a pair, rather than
choosing the most similar videos from a larger set. This approach
reduces the number of judgments needed per iteration, thereby de-
creasing the chance of misalignment. To this end, we represent user
feedback as the differences between a pair of videos. The differences
reflect the feature deviations in their respective sub-perceptions. A
user query, generated from a large language model (LLM) [9, 29],
is a concise caption consisting of up to three sentences narrating
the content of a target video. The search state, represented by the
top-ranked videos, approximates the context of the search. Addi-
tionally, the predictive model calculates a confidence score for each
sub-perception in response to user feedback. This confidence score
is incorporated into the Bayesian update, enhancing tolerance for
inconsistent judgments compared to binary decisions.

Our display model employs two strategies: greedy sampling and
diversity sampling. The greedy strategy follows PicHunter’s most-
probable sampling approach, drawing pairs from videos with the
highest probability of being the target. Since top-ranked videos
often share similar semantics or visual characteristics, diversity
sampling expands the selection range to prevent overly similar
pairs. Training data includes pairs generated by both strategies.
During training and evaluation, after the display is visualized, a
user simulator provides relative judgments based on majority vot-
ing across sub-perceptions. With access to the search target, the
user simulator can determine Oracle judgment by comparing their
distances to the target within each sub-perception. The ultimate
user judgment is simulated by selecting the majority choice among
all sub-perceptions. The predictive user model needs to filter out
the sub-perception(s) that are misaligned with the simulated judg-
ments.

We evaluate our approach on the large-scale open-domain datasets
V3C [1, 17, 18]. To minimize the bias introduced by LLM-generated
captions, we select evaluation queries based on the initial rank of
the search target, reflecting the difficulty of optimizing the target
to the top position through relevance feedback. The initial ranks
range from 10 to 5,000, enabling a comprehensive evaluation of the
system’s capacity to improve search performance across varying
levels of difficulty. Experimental results indicate that our approach
successfully optimizes over 60% of queries to rank-1 when initial
ranks fall between 10 and 50. For targets initially ranked between
1,000 and 5,000, our method achieves a 40% chance of reaching rank-
1. By incorporating explicit search space pruning tricks, the overall
recall@1 performance improves from 0.547 to 0.638, underscoring
the enhanced robustness of relevance feedback in KIS. Additionally,
we evaluate our method using the textual KIS (t-KIS) query set from
the Video Browser Showdown (VBS) [12, 15, 22]. Results indicate

that our method outperforms the baselines and optimizes up to 16
out of the 17 t-KIS queries to rank-1 with the full t-KIS query text.

This paper addresses the challenge of aligning user and ma-
chine perceptions, a problem often overlooked in large-scale inter-
active search, to better leverage user feedback for search re-ranking.
Specifically, misinterpreting user perception based on feedback can
push a search target farther down the rankings. The main contribu-
tion of this paper is the proposal of a predictive model, built upon
the classic PicHunter [2–4], to enhance the robustness of interactive
search. By correctly judging user perceptions, search robustness
is enhanced by steering the Bayesian update to consistently move
the target towards higher rankings.

2 Related Work
Relevance feedback has proven particularly effective in the ad-hoc
video search by narrowing the search scope, where there are abun-
dant positive examples available. Such methods dynamically train
a classifier on-the-fly during the search session to leverage user-
labeled relevant items and improve search performance [6, 7, 14, 25].
To refine the search space, a fuzzy relevance feedback framework
has been proposed, which iteratively optimizes the candidate distri-
bution using positively labeled items from the user [27]. However,
these approaches are less suitable for KIS or video moment retrieval
tasks [5, 8, 11], where typically only one target is associated with
each query. Although utilizing positive examples to refine the query
is impractical in these cases, the relative relationship, for example,
which one is more similar to the search target, can still provide
useful cues for enhancing search performance.

PicHunter [2–4] proposes a method for iteratively refining the
search space by requesting user “relative judgments”, where the
selected items are not strictly positive examples but are instead
“closer” to the search target than the other items. A Bayesian frame-
work is applied to update the probability of candidate items being
positive based on these selections, with the assumption that the
chosen items are closer to the target within the representation space.
This probability is updated exponentially based on the distances
between the selected and non-selected items. However, consistently
interpreting images to provide accurate “relative judgments” can be
challenging, as images are inherently more ambiguous than textual
representations. This limitation is further exacerbated in the era
of deep learning, where representations are often too complex and
less interpretable for users to provide clear relative judgments. Ad-
ditionally, PicHunter’s display strategy, which is used to select the
set of videos for collecting feedback, remains an open issue. While
enumerating all possible combinations may yield an optimal solu-
tion, such an approach is computationally impractical in real-world
applications. SOMHunter [6, 13, 23] is designed to optimize display
selection using a self-organizing map (SOM), which presents the
central videos of clusters formed by the SOM algorithm. Same as
PicHunter, SOMHunter also struggles to to maintain its effective-
ness when user feedback deviates from the system’s perception. In
addition to the relevance feedback, high-level semantic feedback
has also been explored as a means to refine the search space. For
instance, in [26], object-wise question answering is employed to
filter and re-rank search candidates, enabling a more informative
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and proactive approach to candidate refinement. However, the ap-
proach lacks scalability and is unable to improve the rankings of
search targets that are initially ranked low.

Our method addresses misalignment challenges of relevance
feedback within KIS [2–4]. We aim to enhance system robustness
by predicting user subjectivity based on their feedback. The subjec-
tivity is decomposed into multiple sub-perceptions and a weighted
combination of these sub-perceptions is used to approximate the
user’s subjective for each feedback.

3 Problem Statement
As shown in Figure 1, a relevance feedback system for KIS typically
begins with a text query that provides initialization, followed by
interactions among three core components: the display model 𝑓𝐷 (·),
the user (or user simulator) 𝑓𝐿 (·), and the user model 𝑓𝑃 (·). To
address the misalignment issue, the proposed approach is to predict
user perception from the feedback, such that the machine only
refines the search space using the sub-perceptions that align with
the predicted perception. In other words, the approach strives to
align the perceptions between user and machine in every iteration
before Bayesian updating and hence can reduce the number of user
interactions.

We assume that a machine maintains several sub-perceptions,
each corresponding to a distinct feature representation. The prob-
lem is to predict which sub-perceptions the user is referencing
when providing feedback. As illustrated in Figure 1, when the com-
bination of sub-perceptions for the relative judgment is accurately
predicted, the Bayesian update in the user model can refine the
ranking of the search target 𝑣𝑇 aligning with the user’s intent. To
achieve this, we frame the user perception estimation as a classifica-
tion problem. In each iteration, the selection of each sub-perception
is treated as a binary classification task for each user judgment,
taking into account the initial query 𝑞0, the search state, and the in-
teraction history. The search state is represented by the distribution
𝑃 = {𝑝𝑖 }, where 𝑝𝑖 denotes the probability of the 𝑖-th candidate
being the search target.

4 Methodology
Pairwise judgment is proposed as the feedback mechanism of the
framework shown in Figure 1. KIS starts with the user providing a
textual query 𝑞0 and the machine displays the top-ranked videos
for user feedback. In our case, the query 𝑞0 is the LLM-generated
caption summarizing the search target. The display model visual-
izes search results for user feedback collection, the user simulator
provides relative judgments, and the user model incorporates the
user feedback to update the search state from 𝑃𝑡−1 to 𝑃𝑡 , where
the initial 𝑃0 is based on the initial query 𝑞0.

4.1 Pairwise Judgment Feedback
The interactionwith pairwise judgment follows the PicHunter’s top-
k judgment feedback [2], with some modifications. Specifically, the
display 𝐷 = {(𝑣𝑎, 𝑣𝑏 )} is now structured as a list of video pairs, and
the user feedback 𝐿 = {𝑙} consists of binary variables. Here, 𝑙 equals
0 if the user selects 𝑣𝑎 , and 1 if the user selects 𝑣𝑏 . The pairwise
judgment feedback provides a more efficient interaction method
compared to the top-k feedback in terms of both user cognitive

load for providing relative judgments and system computational
complexity.

The top-k feedbackmechanism used by PicHunter instructs users
to select multiple videos from the recommended videos. Intuitively,
the selection can be tedious because, for any video under selection,
it involves the similarity comparison to the remaining unselected
videos. The selection complexity grows as the number of recom-
mended videos increases. For example, a selection of four videos
from a display with size eight can naively involve 22 (i.e., 7+6+5+4)
comparisons. When a user selects𝑚 videos from 𝑛 displayed videos,
the system needs to calculate the cosine similarity for all combi-
nations of selected (𝑉+) and unselected (𝑉−) videos, resulting in
a complexity of O(𝑚 · 𝑛), where𝑚 and 𝑛 are the numbers of se-
lected 𝑉+ and unselected 𝑉− videos, respectively. This approach
becomes computationally intensive as 𝑛 and𝑚 increase, particu-
larly when updating the probability distribution 𝑃 on datasets with
a large number of videos (|𝑉 |), leading to potential computational
overhead and increased latency in updating the ranking model.

In contrast, pairwise judgment feedback significantly reduces
both user effort and computational demands by providing simpler
binary comparisons. The user only needs to identify the better video
from each pair, resulting in 𝑛

2 comparisons if there are 𝑛 videos in
total. From a computational perspective, the system merely needs
to calculate the cosine similarity between each pair, resulting in a
linear complexity of O(𝑛). While the reduction in the complexity
of computational complexity might not be significant, pairwise
judgment has the advantage that it reduces the cognitive load of
users by avoiding exhaustive selection of images. The chance that
users will make inconsistent judgments is also reduced.

4.2 Display Model
We adopt pairwise judgment feedback as the interaction method,
where users are presented with video pairs and asked to select the
video that more closely aligns with the search target in each pair.
As discussed in Section 4.1, compared to the PicHunter’s Top-k
judgment feedback, pairwise judgment feedback reduces the user’s
cognitive load and the computational complexity in the Bayesian
update and has higher robustness to inconsistent user feedback.
Figure 1 illustrates an example of such a video pair. Given the
initial query “a woman in a red dress sitting at a desk”, the search
engine ranks the candidates, pushing themost semantically relevant
videos to the top. For example, both the displayed videos depict a
sitting woman in a red dress. The display model is then tasked with
sampling pairs from the results to collect user feedback.

In our display model, two sampling strategies are introduced:
Greedy Display and Diverse Display. The Greedy Display is based on
the PicHunter’s Most-Probable strategy but adapted to accommo-
date pairwise judgment feedback. Specifically, the greedy display
selects 2 × |𝐷 | videos with the highest probabilities from 𝑃 , where
|𝐷 | refers to the number of pairs in the display. These videos are
then randomly paired to form the display. While selecting the top-
ranked videos is reasonable, it often results in pairs of videos with
highly similar content, which can make it difficult for users to
make distinctions and cause the search to become trapped in a local
optimum.
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Figure 1: Framework of the proposed relevance feedback system. The initial query for the search target is “a woman in a red
dress sitting at a desk”.

While PicHunter’s another strategy, the Most-Informative, can
escape local optima by randomly selecting videos from 𝑃 , it does not
account for the relationship between the paired videos. To overcome
this, we introduce theDiverse Display, a modification of PicHunter’s
Most-Informative strategy, which seeks to select the video pairs
that are neither too similar nor too dissimilar for user feedback.
To prevent the videos in each pair from being irrelevant to the
search goal, we consider only the top-𝑁𝐷 candidates by probability
according to 𝑃 . Then, to increase the diversity between the videos
in each pair, one video is sampled from the top 50 candidates (i.e.,
[0, 50]) and the other from the bottom 50 (i.e., [𝑁𝐷 − 50, 𝑁𝐷 ]). Both
display strategies are employed during the training to augment the
training data, while during the evaluation, only the greedy strategy
is used to sample the display.

4.3 User Simulator
When presented with the display, the user directs the search by
providing relative judgments. During both training and testing of
themodel, a user simulator is needed to simulate human behavior. In
PicHunter, a perfect user is assumed, capable of making judgments
that align perfectly with the system’s similarity measure based on
video representations. More specifically, both the user and system
are assumed to have a single fully aligned perception throughout
the period when multiple rounds of feedback are provided for a
query. However, this assumption is unrealistic, particularly when
the video features are represented by embeddings, which are less
interpretable to human users compared tomore explainable features
like color. Our approach seeks to improve the system’s robustness to
a situation in which the user provides multiple rounds of feedback,
each possibly reflecting a different perception. We call this situation
as the imperfect user scenario. In our method, we acknowledge
that the perfect user scenario is impractical but assume that a user
perception is likely to align with one or a combination of several
representations (or sub-perceptions) defined by the system.

We decompose user perception into multiple sub-perceptions,
each represented by an embedding feature, denoted as 𝑓𝑖 . For video
pairs in the display, the simulated user makes the relative judgments
independently for each sub-perception by selecting the video that

is closer to the search target based on the video representation
corresponding to that perception. The final decision of the simulated
user is made through the majority voting across all sub-perceptions.
For instance, for a video pair (𝑣𝑎, 𝑣𝑏 ), the user simulator would
select 𝑣𝑎 in their feedback if more than half of the sub-perceptions
determine that 𝑣𝑎 has a higher similarity to the search target 𝑣𝑇
than 𝑣𝑏 . Consequently, the user feedback at time 𝑡 is structured as
a list of binary variables 𝐿𝑡 = {𝑙𝑡 }, where the value 0 of 𝑙𝑡 denotes
the selection of 𝑣𝑎 ; otherwise, 𝑣𝑏 is labeled as the video closer to
the target.

Since these sub-perceptions are also used to update the prob-
ability 𝑃 in the user model, inconsistency arises if not all sub-
perceptions choose the same video. In such cases, the sub-perceptions
that do not agree with the results of the majority decision are
treated as misalignment, reflecting the imperfect user scenario.
The system’s search performance degrades if these misaligned sub-
perceptions are used to update 𝑃 . To address this, a user model
that includes a module to predict and filter out misaligned sub-
perceptions is proposed in the following section.

4.4 Predictive User Model
In this section, we propose the predictive user model that comprises
two modules: the user perception prediction module 𝑓

pred
𝑃

and
the update module 𝑓

upd
𝑃

. In PicHunter, where a perfect user is
assumed, the user model only includes an update module that
performs a Bayesian update based on all user judgments without
any filtering. In contrast, our approach incorporates the prediction
model 𝑓 pred

𝑃
to handle the imperfect user setting by predicting the

combination of sub-perceptions for each user feedback. Rather than
a binary selection, each sub-perception is assigned a confidence
score 𝑐𝑖 . This confidence score is then used in the Bayesian update
of 𝑓 upd

𝑃
to weight the contribution of each sub-perception during

the judgment process, enabling a soft update, which increases the
system’s tolerance to user feedback of varying perceptions.

4.4.1 User Perception Prediction. Apredictionmodel 𝑓 𝑝𝑟𝑒𝑑
𝑃

is trained
independently for each of the sub-perceptions. At each iteration 𝑡 ,
the model 𝑓 pred

𝑃
estimates the confidence score 𝑐𝑖 based on the user
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Figure 2: Architecture of the proposed predictive model 𝑓 𝑝𝑟𝑒𝑑
𝑃

. For simplicity, we annotate the time step at the bottom instead
of on the symbols.

feedback (𝐷𝑡 , 𝐿𝑡 ), historical interactions (𝐷1, 𝐿1, . . . , 𝐷𝑡−1, 𝐿𝑡−1),
and the search state. A search state comprises the videos and their
probability distribution 𝑃𝑡 = {𝑝𝑡

𝑖
}. Empirically, we only consider

the top 50 videos with the highest probability 𝑝𝑖 . We represent the
search state as an embedding, which is obtained by mean pooling
the representations of top-50 videos.

For the user feedback (𝐷𝑡 , 𝐿𝑡 ), the feature difference between the
selected and non-selected videos in a pair is used to represent the
relative judgment. Denote 𝑣+ and 𝑣− as the representations of the
selected and unselected videos, respectively. A relative judgment
is calculated as 𝑣diff = 𝑣+ − 𝑣− . To clarify the role of 𝑣diff, we can
compare it to a term in the formulation of Bayesian update. In
PicHunter, the probability of the 𝑖-th video 𝑝𝑡

𝑖
at time 𝑡 is updated

iteratively as: 𝑝𝑡
𝑖
= 𝑝𝑡−1

𝑖
· 𝑝𝑡

𝑖
, where 𝑝𝑡

𝑖
represents the temporal

probability calculated based on the relative judgment received at
iteration 𝑡 . The calculation of the temporal probability has been
updated as follows:

𝑝𝑡𝑖 =
∑︁

(𝑣+,𝑣− )

1
1 + 𝐸𝑋𝑃 (− 1

𝜌 [𝑠 (𝑣+, 𝑣𝑖 ) − 𝑠 (𝑣−, 𝑣𝑖 )])
(1)

where 𝑠 (·) denote the cosine similarity and 𝑣𝑖 denotes the 𝑖-th video
in the search space. Now we discuss the relationship between the
feature difference 𝑣diff and the video 𝑣𝑖 . The similarity between 𝑣diff
and 𝑣𝑖 is calculated as:

𝑠 (𝑣diff, 𝑣𝑖 ) =
𝑣diff · 𝑣𝑖
| |𝑣diff | |

(2)

=
(𝑣+ − 𝑣−) · 𝑣𝑖

| |𝑣diff | |
(3)

=
1

| |𝑣diff | |
·
[
𝑠 (𝑣+, 𝑣𝑖 ) − 𝑠 (𝑣−, 𝑣𝑖 )

]
(4)

As shown in Equation 4, the similarity between 𝑣diff and 𝑣𝑖 is pro-
portional to the term 𝑠 (𝑣+, 𝑣𝑖 ) − 𝑠 (𝑣−, 𝑣𝑖 ) in the Bayesian update.

By rearranging the terms in Equation 4, we obtain 𝑠 (𝑣+, 𝑣𝑖 ) −
𝑠 (𝑣−, 𝑣𝑖 ) = ∥𝑣diff∥ · 𝑠 (𝑣diff, 𝑣𝑖 ). Substituting this into the denomina-

tor of Equation 1, we rewrite it as 1 +
[
exp

(
− 1
𝜌 𝑠 (𝑣diff, 𝑣𝑖 )

)] ∥𝑣diff ∥
.

The value of the denominator is sensitive to changes in ∥𝑣diff∥, par-
ticularly when ∥𝑣diff∥ approaches zero. This typically occurs in later
rounds of interaction, where top-ranked videos become increas-
ingly similar. While the predictive model can effectively capture
𝑠 (𝑣diff, 𝑣𝑖 ) from the inputs, it struggles to detect subtle variations in
∥𝑣diff∥. To address this, we introduce the distance embedding 𝐸𝑑 .
Specifically, we divide the possible range of | |𝑣diff | |, i.e., (0, 1], into
100 intervals and assign a learnable embedding to each interval,
allowing the model to capture subtle variations in the L2-norm
of the feature differences. The impact of distance embedding is
analyzed in the ablation study.

As depicted in Figure 2, a transformer-based model takes the
initial query 𝑞0, along with both the current and historical user
judgments as input, followed by a fully connected layer to output
the confidence score {𝑐𝑖 } for each sub-perception. Noted that user
judgment is modeled as the sum of 𝑣diff, 𝑣𝑠𝑡 and 𝐸𝑑 , where 𝑣𝑠𝑡 is the
embedding of search state at iteration 𝑡 . In summary, the confidence
scores 𝑐𝑖 are computed as follows:

{𝑐𝑡𝑖 }
|𝐷 |
𝑖=1 = 𝑓

pred
𝑃

( [𝑞0;𝐷1, 𝐿1, 𝑣𝑠1 , . . . , 𝐷
𝑡−1, 𝐿𝑡−1, 𝑣𝑠𝑡−1 ;𝐷

𝑡 , 𝐿𝑡 , 𝑣𝑠𝑡 ;𝐸𝑑 ])
The model parameters are optimized using binary cross-entropy
loss, which will be elaborated in Section 4.5.

4.4.2 Soft Bayesian Update. The update model 𝑓 upd
𝑃

incorporates
the model-aligned user feedback to progressively refine the search
state by updating the probability distribution from 𝑃𝑡−1 to 𝑃𝑡 . The
initial probability distribution 𝑃0 is derived from the initial query
𝑞0. At each iteration, the probability 𝑝𝑖 for the 𝑖-th video is updated
as follows:

𝑝𝑡𝑖 = 𝑝𝑡−1𝑖 · 𝑝𝑡𝑖 =

𝑡∏
𝑘=0

𝑝𝑘𝑖 (5)

where 𝑝𝑡
𝑖
represents the temporal probability of the 𝑖-th video

candidate at interaction 𝑡 . The 𝑝𝑡
𝑖
aggregates the model-aligned

user judgments from all the sub-perceptions together, calculated as
𝑝𝑡
𝑖
=
∑

𝑓 𝑝
𝑡,𝑓

𝑖
, where 𝑓 denotes the index of the sub-perception. In

the 𝑓 -th sub-perception, 𝑝𝑡,𝑓
𝑖

incorporates the confidence score 𝑐
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to weight the contribution of the pairs, obtained as follows:

𝑝
𝑡,𝑓

𝑖
=

∑︁
(𝑣+

𝑗
,𝑣−

𝑗
)

1

1 + 𝐸𝑋𝑃 (− 1
𝜌 · 𝑐 𝑗 ·

[
𝑠 𝑓 (𝑣+

𝑗
, 𝑣𝑖 ) − 𝑠 𝑓 (𝑣−

𝑗
, 𝑣𝑖 )

]
)

(6)

where 𝑠 𝑓 (·) denotes the cosine similarity calculated based on the
feature representation of the 𝑓 -th sub-perception.

4.4.3 Search Space Pruning. Although the initial query cannot
guarantee to locate the search target, it helps to initialize a prelim-
inary ranked list where the content of top-ranked video shots is
close to the search target. However, the subsequent user feedback
might boost the ranks of irrelevant videos, which are ranked low
in the initial search list. As shown in Figure 3, the query “a man
is walking down the street with a backpack” is employed as the
initial query. From the top-ranked results, a pair of shots is selected
and displayed for user feedback. Compared to the man in red who
wears a single-shoulder bag in the top shot, the one in the bottom
shot has a similar backpack as the target and wears a dark coat.
With the user feedback, the rank of the search target is improved
from 244 to 62. However, irrelevant shots showing a backpack and
dark coat are also elevated, for example “a woman walks on a street
with a backpack”, “a man carrying backpack rides a bike”, “a man
in black walks through a corridor with a backpack”, and “a woman
stands in the snow with a backpack”.

We engineer the problem by considering only the top-ranked
video shots retrieved for the initial query for display. Specifically,
we define a threshold, 𝑁𝑝𝑟𝑢𝑛𝑒 , representing the number of video
shots for Bayesian update. Candidates outside the top-𝑁𝑝𝑟𝑢𝑛𝑒 are
excluded from being selected for display. Due to the reduction
in search space, the videos updated with higher probability by
Bayesian update are also less likely to drift from the initial query.
The embedding of the current search state is also stable, not cap-
turing diverse content irrelevant to the initial query.

shot12673_253

The Returned Results

The Search Target

A Displayed Pair

Figure 3: Illustration of the shift in search results. The initial
query is “A man is walking down the street with a backpack”.
The search target is boosted to 62th rank from 244th rank
after the second shot in the display panel is selected as feed-
back. Nevertheless, the ranks of irrelevant images, which
are similar to the selected shot but not the query, are also
elevated.

4.5 Model Learning
We use binary cross entropy (BCE) as the loss function to character-
ize the mismatch between the predicted and actual user perceptions.
The BCE loss function is defined as follows:

𝐿𝐵𝐶𝐸 = − 1
𝑁

𝑁∑︁
𝑖=1

[𝑦𝑖 log(𝑐𝑖 ) + (1 − 𝑦𝑖 ) log(1 − 𝑐𝑖 )] , (7)

where 𝑁 is the number of feedbacks, 𝑦𝑖 represents whether a feed-
back aligns with the sub-perception, and 𝑐𝑖 is the predicted confi-
dence score. The BCE losses of different sub-perceptions are then
averaged.

We perform self-supervised learning by using the simulated
interactions in the perfect user setting. Denote an interaction tra-
jectory as [𝑞0;𝐷1, 𝐿1, 𝑣𝑠1 , . . . , 𝐷

𝑡−1, 𝐿𝑡−1, 𝑣𝑠𝑡−1 ;𝐷𝑡 , 𝐿𝑡 , 𝑣𝑠𝑡 ], where
the search target is reached at 𝑡 th iteration. We simulate the system
to generate a large number of interaction trajectories. Empirically,
we store the trajectories whose 𝑡 <= 7 as the training examples,
such that the model is trained using these examples to minimize
the number of user interactions. Using the trajectories, the model
is trained to predict the sub-perception of every user feedback at
iteration 𝑡 in the imperfect user setting.

5 Experiments
We begin this section by introducing the dataset and experiment
settings. As different ways of expressing a query can impact re-
trieval performance, we also compare the effect of using different
LLMs for generating captions as queries. Finally, we present the per-
formance of the proposed approach in comparison to two variants
of PicHunter.

5.1 Dataset and Setting
The experiments are conducted on the large-scale open-domain
datasets, V3C1 [1] and V3C2 [17], which consist of 1,082,659 and
1,425,454 video clips, respectively. The videos in V3C1 are used as
queries to train the user model for the prediction of sub-perceptions,
while V3C2 is used for performance evaluation. Note that the
testing set is formed by all the videos in V3C2, and the testing
queries are sampled from V3C2 as elaborated in Section 5.2. We
use CLIP4Clip [16], ITV [24], and BLIP [10] features as three sub-
perceptions. We limit the number of user interactions to up to seven
iterations. In the display model, the number of pairs in display 𝐷

is set to 5. For the strategy of diverse display, 𝑁𝐷 is set to 100,
where the pair is formed by a video sampled from the top-50 and
a video from the bottom-50 of the top-𝑁𝐷 candidates. In the user
model, the hyper-parameter 𝜌 used in the Bayesian update is set
to 0.05 and the threshold for search space pruning 𝑁 𝑡

𝑝𝑟𝑢𝑛𝑒 is set to
5,000. The textual queries are the captions generated from the query
videos. We employ BLIP2 [9] and LLaVA-NeXT-Video [29] for video
captioning. The effect of the caption sources will be elaborated in
Section 5.2.

5.2 Multi-modal LLMs Generated Captions
We use LLaVA-NeXT-Video [29] and BLIP2 [9] to generate captions
for the target shots, serving as the user query to assign the initial
probability to the search candidates. Although the LLaVA-NeXT
can generate detailed and precise video captions, we limit the LLM
to generating a concise caption to simulate the human query. We
use “Please provide a video description with two or three sentences
and keep it as brief as possible, focusing on the main subjects, their
actions, and the background scenes.” as the captioning prompt.
Figure 4 shows examples of captions generated by LLaVA-NeXT
and BLIP2. To assess the bias introduced by the captioning model,
we sample an evaluation set composed of queries where the search



Robust Relevance Feedback for Interactive Known-Item Video Search ICMR ’25, June 30-July 3, 2025, Chicago, IL, USA

targets reside at different depths of their search rank lists. The
challenge of boosting the search targets to the top-ranked position
is basically proportional to the search depth. Specifically, we select
4,000 search targets from each of the following rank intervals: (10,
50], (50, 100], (100, 500], (500, 1,000], and (1,000, 5,000], resulting
in a total of 20,000 targets for evaluation. Note that there are two
sets of 4,000 search targets, one from using LLaVa-NeXTcaptions
as queries and the other from BLIP2.

LLaVA-NeXT-Video: The video shows two individuals knocking 
on a door, entering a room, and engaging in conversation with 
another person inside.

BLIP2: A man and woman standing in front of a door

00:01 00:03 00:05

00:07 00:09 00:11

Figure 4: Example of LLaVA-NeXT and BLIP2 captions.

Figure 5 demonstrates the Recall@1 performance of video cap-
tion queries from two different LLMs, LLaVA-NeXT-Video [29] and
BLIP2 [9], across different ranges of the target’s initial rank. The
x-axis denotes the range of depth where a search target resides
in its rank list. The y-axis shows the recall@1 performance up to
seven rounds of user interactions. The results are averaged over all
the queries that fall in a particular search range.

The results show amarginal difference between BLIP2 and LLaVA-
NeXT-Video across different ranges of search depth. For example, in
the 10-50 range, BLIP2 slightly surpasses LLaVA-NeXT-Video, but
in the subsequent ranges, such as 50-100 and 100-500, both models
exhibit nearly identical performance. This suggests that the choice
of the captioning model (whether LLaVA-NeXT-Video or BLIP2)
has minimal impact on the retrieval success after several iterations
of the search.
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Figure 5: Performance comparison of different caption
sources.

5.3 Performance Comparison
Table 1 compares the Recall@1 performance of threemodels-Random,
PicHunter, and our proposed model (denoted as “Ours”) over seven
iterative steps. The user model Random, different from the ran-
dom strategy introduced in the display model, randomly selects

sub-perceptions for each user feedback to update the probability dis-
tribution 𝑃 . In the PicHunter baseline, the user model assumes that
relative judgments are aligned with all sub-perceptions, updating 𝑃
without filtering out inconsistent sub-perceptions. In contrast, Ours
updates 𝑃 and optimizes the target’s rank with the model-aligned
perception. The table highlights the robustness of each system, as
reflected in their ability to recall the correct result at rank 1. The
Random model demonstrates the lowest performance, with only
a slight improvement across the steps, starting from around 0.02
at Step 1 and gradually increasing to 0.23 at Step 7. The PicHunter
baseline, while better than Random, shows stronger improvements,
beginning at 0.0187 and achieving 0.49 by Step 7.

The proposed model consistently outperforms both baselines at
each step. It starts at 0.0238, which is higher than both Random
and PicHunter at Step 1, and continues to surpass them in every
step. By Step 7, the proposed model achieves a Recall@1 of 0.5467,
representing the highest robustness among the three models. The
progressive gap between the proposed model and the baselines
widens as the iterations increase, suggesting that the proposed
system is more efficient and effective at learning from previous
iterations and improving retrieval accuracy. The significant im-
provement of the proposed model over the baselines, particularly
PicHunter, underscores its superior performance and robustness in
video retrieval tasks.

Figure 6 presents the Recall@1 performance comparison among
these three approaches for the search targets residing at different
depths. The Random baseline consistently underperforms two other
approaches across all ranges of search depth. For example, in the
10-50 range, it achieves a recall of approximately 0.3, and the per-
formance gradually drops thereafter. In the 1000-5000 range, the
Random baseline recall drops below 0.1, reflecting its struggle with
more difficult retrieval tasks. PicHunter significantly improves over
Random, particularly in the lower rank ranges. For instance, in the
10-50 range, PicHunter achieves a recall of approximately 0.58, and
in the 50-100 range, its performance achieves around 0.53. However,
as the rank range becomes more challenging (e.g., 500-1000 and
1000-5000), PicHunter’s performance also declines, though it con-
sistently outperforms the Random baseline. The proposed model,
however, consistently outperforms both baselines across all diffi-
culty levels. In the 10-50 range, it reaches nearly 0.65 recall, which
is considerably better than PicHunter. Similar to PicHunter, the
performances also drop proportionally with the increase in search
depth. However, recall@1 is consistently better than PicHunter
across all search depths.
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Figure 6: Recall@1 performance comparison.
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Table 1: Recall@1 performance comparison with baselines at different steps.

Step-1 Step-2 Step-3 Step-4 Step-5 Step-6 Step-7
Random 0.0155 0.0355 0.0624 0.0946 0.1351 0.1795 0.2308
PicHunter 0.0187 0.0507 0.1091 0.1874 0.2861 0.3942 0.4949
Ours 0.0238 0.0688 0.1409 0.2363 0.3438 0.4496 0.5467

We conduct a significance test by a paired t-test on each search
depth to contrast the performances of Ours and PicHunter. At the
significance level of 0.05, with a p-value of 0.0114, the results verify
that Ours is significantly better than PicHunter across all depths.

5.4 Search Space Pruning
In this section, we perform explicit pruning of the search space.
Explicit pruning filters out irrelevant videos, thereby preventing
the probabilities of irrelevant candidates from increasing due to
ambiguity in relevance feedback. Specifically, we discard candi-
dates that are initially ranked lower than 5,000 based on the textual
query. In Table 2, we compare Recall@1 performance at different
steps for various models, with and without search space pruning.
The baseline model, PicHunter, and the proposed model, labeled
as “Ours” are evaluated across seven iterative steps. The proposed
model consistently outperforms PicHunter at each step. Further-
more, the table also includes variants of these models that employ
search space pruning, indicated as “PicHunter w/ Prune” and “Ours
w/ Prune”. The use of search space pruning leads to notable perfor-
mance gains for both models. For instance, after 7 steps, PicHunter
achieves a Recall@1 value of 0.4949, while “PicHunter w/ Prune”
reaches 0.6234. Similarly, the proposed model without pruning at-
tains 0.5467, whereas the variant with pruning, “Ours w/ Prune”
achieves the highest score of 0.6384. Across all steps, the prun-
ing technique enhances recall performance, with “Ours w/ Prune”
demonstrating the best results, particularly evident in the highest
Recall@1 value among all models after 7 steps. This suggests that
search space pruning is consistent and highly effective in improving
retrieval performance.

Table 2: Recall@1 performance comparison at different steps
with search space pruning.

Step-1 Step-3 Step-5 Step-7
PicHunter 0.0187 0.1091 0.2861 0.4949
- w/ Prune 0.0202 0.1646 0.4147 0.6234
Ours 0.0238 0.1409 0.3438 0.5467
- w/ Prune 0.0240 0.1835 0.437 0.6384

5.5 Performance on VBS textual-KIS Query
We evaluate the proposed model and baselines on the V3C2 dataset
using the 17 textual KIS (t-KIS) queries 1 from video browser show-
down (VBS) [12, 15, 22] 2022 to 2024. In the t-KIS task, a query is
presented in three rounds, with more details being supplemented
to the query in each round. Table 3 shows the number of queries
where their search targets are successfully identified over three
different rounds. Note that the search target may involve multiple
shots as defined in the V3C2 dataset. In such cases, we evaluate
1Please refer to the query text in the supplementary document.

recall performance by considering the best rank among all involved
video shots.

As shown in Table 3, the proposed model resolves the most
number of queries in round 1, achieving the highest recall@1 and
recall@10. With more details being exposed for these queries in the
next two rounds, our model manages to rank the search targets for
16 out of 17 queries at top-1 and all queries within top-10. Compared
to Random and PicHunter, our model not only finds more search
targets when reaching the 3rd round but also the fastest in terms of
number of iterations required to find these queries. For example, our
model requires 4.5 iterations to rank a target to the top-1 position
on average, versus Random and PicHunter which require 5.25 and
4.57 iterations, respectively. In terms of speed, our model needs
0.067 seconds for each iteration, which is slower than 0.025 seconds
by PicHunter. Nevertheless, the slower speed is compromised by
search efficiency and fewer iterations. Overall, the interaction speed
is in real-time for all three compared approaches.

Table 3: The performances on t-KIS queries. The results show
the number of search targets successfully found when more
details are included to these queries over three rounds.

Recall@1 Recall@10

r1 r2 r3 r1 r2 r3

Random 6/17 8/17 8/17 9/17 12/17 12/17
PicHunter 9/17 11/17 14/17 11/17 15/17 16/17
Ours 10/17 14/17 16/17 14/17 17/17 17/17

6 Conclusion
Despite PicHunter as a classic model proposed more than 20 years
ago, it can still effectively boost 40.05% of search targets ranked
at a depth beyond 1,000 to the top-1 rank within seven rounds of
iteration on a million-scale video dataset. Nevertheless, such an im-
pressive performance is grounded on the assumption that the user
can provide relative judgment aligned with the machine’s percep-
tion of the similarity measurement. By pairwise relative judgment
and the predictive user model as proposed in this paper, we have
relaxed PicHunter’s assumption of a perfect user, allowing for im-
perfect user feedback by modeling user perception as a combination
of multiple sub-perceptions. Our approach improves the robustness
of PicHunter by boosting more search targets to top-1 across dif-
ferent search depths. At a depth beyond 1,000, our approach can
boost 6.4% of search targets to top-1. On VBS textual KIS search,
our approach is also able to rank all the search targets to top-10,
with the less number of iterations compared to PicHunter.
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A Ablation Study
Tables 4 and 5 provide results from ablation studies that analyze
the contribution of different components to the overall model per-
formance. Table 4 represents the ablation results of the model in
the PicHunter’s setting, while Table 5 includes results that are en-
hanced with search space pruning. In both tables, the performance
of the proposed model (“Ours”) is compared with three ablated ver-
sions, each removing a specific component: “SoftUpd”, “StateRep”,
“DistEmb” which denote the soft updating, the approximated state
representation 𝑣𝑠𝑡 , and the distance embedding 𝐸𝑑 , respectively.
Across all steps, the complete model consistently outperforms the
ablated versions, demonstrating the effectiveness of these compo-
nents. In Table 4, after 7 steps, the full model achieves a Recall@1 of
0.5467, which is notably higher than the ablatedmodels, particularly
“SoftUpd”which achieves only 0.3321. Similarly, in Table 5, which in-
cludes search space pruning, the model with all components (“Ours
w/ Prune”) achieves the highest Recall@1 values across all steps,
reaching 0.6384 at Step-7, while “SoftUpd” and “StateRep” versions
fall significantly behind. Notably, the performance gaps between
the full model and the ablated versions are present in both settings,
emphasizing the importance of all components in the model’s ar-
chitecture. The enhanced version with pruning consistently yields
superior performance compared to the original, further demonstrat-
ing the impact of search space pruning on improving the model’s
accuracy. These results suggest that each component plays a cru-
cial role in maximizing model effectiveness, and their combined
presence contributes to the overall performance gains in both the
original setting and the one enhanced by search space pruning.

Table 4: Ablation study on the model components.

Step-1 Step-3 Step-5 Step-7
Ours 0.0238 0.1409 0.3438 0.5467
- SoftUpd 0.0196 0.0993 0.2113 0.3321
- StateRep 0.0223 0.139 0.3337 0.5341
- DistEmb 0.0249 0.1392 0.3271 0.5133

Table 5: Ablation study on themodel components with search
space pruning.

Step-1 Step-3 Step-5 Step-7
Ours w/ Prune 0.0240 0.1835 0.4370 0.6384
- SoftUpd 0.0169 0.0677 0.1429 0.2255
- StateRep 0.0253 0.1762 0.4315 0.6311
- DistEmb 0.0244 0.1770 0.4287 0.6291

B Effect of Distance Embedding
As shown in Table 4, the performance of “- DistEmb” is slightly
better than “Ours” at the first step, with a margin of 0.0011. In
subsequent rounds, “Ours” gradually outperforms “- DistEmb”, with
the performance gap increasing from 0.0017 to 0.0334. These results
support the discussion in Section 4.4.1: the distance embedding
enables the model to capture subtle changes in ∥𝑣diff∥, particularly
in the later rounds. As described in Section 4.4.1, the range of
possible ∥𝑣diff∥ values, i.e., (0, 1], is divided into 100 intervals, each
associated with a learnable embedding. In the first round, ∥𝑣diff∥
tends to be relatively large, but values in the higher end of the range
are less frequent, which may result in under-trained embeddings.
This likely contributes to the slightly lower performance observed
in the first round.

C Textual KIS Query and User Feedback
Table 6 presents the query text for the VBS t-KIS from 2022 to
2024. As discussed in Section 5.5, the full query is released in three
rounds. We use colored solid, dashed, and dotted underlines to
denote the query segments newly introduced in the first, second,
and third rounds, respectively. Additionally, Figure 7 provides an
example of user feedback, specifically for query Q1 in Table 6.
The user simulator applies majority voting based on the similarity
measure of three sub-perceptions between the video pair and the
search target. The predictive user model then filters out inconsistent
sub-perceptions and refines the search target to achieve the top-1
position.

Close-up of motorbike exhaust pipes being cleaned with a wet sponge. 
Two chromed pipes are visible, open on the left.

Search Target

Figure 7: An example of user feedback. Given the search
target on the left, the user simulator provides feedback on the
pairs, with the green dashed boundary indicating selection.
The user model then filters out irrelevant sub-perceptions
and promotes the search target to the top-1 position. The
initial textual query is: “Close-up ofmotorbike exhaust pipes
being cleaned with a wet sponge. Two chromed pipes are
visible, open on the left.”
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Table 6: The query text of the t-KIS from VBS 2022 to 2024. The query text is divided into three parts which are visually
distinguished using colored solid, dashed, and dotted underlines. In each round, the query is presented to the participants and
is appended to the previous text.

Query
ID Textaul KIS Query

Q1 Close-up of motorbike exhaust pipes being cleaned with a wet sponge. Two chromed pipes are visible, open
on the left. . . . .The. . . . . . . . . . .forearm. . . .of . .a. . . . . .man. . . . . . . . . . .wearing. . . . . . . .black. . . . . . . . . .T-Shirt . . .is . . . . . . . . .visible . .a . . . . .few. . . . . . . . .times.

Q2
Almost static shot of a brown-white caravan and a horse on a meadow. The caravan is in the center, the
horse in the back to its right, and there is a large tree on the right. . . . . .The. . . . . . . . . .camera. . .is . . . . . . . . . .slightly. . . . . . . . .shaky,. . . . .and. . . . . . . .there . . .is
.a. . . . . . . . . . .forested. . . . .hill. . . .in . . . . .the . . . . . . . . . . . . . . . .background.

Q3

Shot of an opened magazine, showing a drawing of a bearded man on the right side, then a shot of a person
standing in a street and holding different pages of an open magazine in front of the camera. The person in
the street wears a blue T-shirt and light grey jacket, and is wearing a mask and sunglasses. . . . . . . . .There . . . .are. . . . . . . .white
. . . . . . . . .frames . . . . . .with. . . . . . . .black . . . . .text. . . . . . . . . . . . .messages. . . . . . . . . . .flashing. . . .up. . .in. . . . . . . . . . . . .between. . . . . .The. . . . . . . . . . . .drawing . . .in. . . . .the. . . . . .first . . . . . .shot. . .is. . . .on. . . . . . . .black
. . . . . . . . . . . . . . . .background, . . . . .the . . . . . .man. . . . .has. .a. . . . . . . .white. . . . . . . . .beard,. . . . .the . . . . . .title . . .of. . . . .the . . . . .left . . . . . . .page . .is. . . . . . . ."vote . . . .for. . . . . . . . . .Pedro".

Q4
A shot of a man in a water slide, followed by two shots of two men trying to light a fire on a beach. The man
slides down head first, and wears black bathing trunks. . . . . . . .There. . .is. .a. . . . . . . .circle. . .of. . . . . . . . .stones. . . . . . . . . .around. . . . .the. . . . . .fire, . . . . .and. . . . .we . . . .do
. . . .not. . . . .see. . . . .the. . . . . . . .heads. . .of. . . . .the. . . . . .two . . . . . . .men.

Q5
View from an upper deck of a ship down to a lower deck and water, slowly changing the view to the front of
the ship, where a man with a camera walks into view. The lower deck is on the left, with green floor and two
red/orange chairs, and water is on the right. . . . . .The . . . . . .man. . . . . . . . .wears . . . . . . .black. . . . . . . . . . .trousers. . . . . .and . .a . . . . . .grey. . . . . . . . .jacket.

Q6
Kids in kayaks on a river, throwing paddles through three coloured hoops placed over the water. The
sequence starts with two kids next to each other in red kayaks with red paddles. . . . . .The. . . . . . .river . . .is . . . . . . . .partly. . . . . . .lined
. . . . . .with . . . . . . .trees . . . . .and. . . . . . . .there . . . .are. . . . . . . . . . . . . .spectators. . . .on. . . . .the. . . . . . . . . . . . .accessible. . . . . . . .spots.. . . . .We. . . . .see. . . . . . . .shots . . . . . . .from . . . . . .both. . . . . . .sides. . . .of . . . .the. . . . . . . .river.

Q7

Close-up shots of making coffee: grinding beans manually, putting the powder into a French press, and
pouring coffee into a red mug. The French press is also red, and we see it operated from the top. . . . . . . . . . .Pouring
. . . . . . .beans. . . . . .into. . . . .the. . . . . . . . . .grinder. . .is. . . . . .also . . . . . . . . .shown. . . . . . .from. . . . .the . . . . .top.. . . . . .The. . . . .red. . . . . .mug. . . . .has. . . . .the. . . . . .text . . . . . . ."The . . . . . . . . . . .Pursuit" . . .in. .a. . . . . . . .black . . . . . . .circle. . . .on
. . .it.

Q8
Close-up of a man lighting a match on a stone, and then cooking at a fireplace in the woods. He uses a black
pot with water and pours powder into it while stirring. . . . . .The. . . . . . . . . . . .fireplace . .is. . . . . . . . . . . . . . . .surrounded. . . .by . . . . . . . . .stones,. . . . . .and. . . .we. . . . .see. .a
. . . . .blue. . . . . .tent. . . .in . . . .the. . . . . . . . . . . . . . . . .background.

Q9
Hands of a kid applying glue to an egg carton and then a view of a sculpture made of those cartons. In the
second shot, the camera pans up along green and turquoise egg cartons. . . .On. . . . .the. . . . . .first. . . . . . .shot,. . . . .we . . . .see. . .a . . . .jar . . . . . .with
. . . . . . .white. . . . . . .glue,. . . . .the. . . . . . . . . .bottom. . .of. . . .an. . . . .egg. . . . . . . . .carton. . . . . .and. . . . .the . . . . .kid . . . . . . . . . .holding. .a. . . . . . . . .brush.

Q10
A two-masted sailing ship leaves a harbour, moving right behind a stone wall and a white light beacon.
There are mountains in the background, and the sun is behind clouds. . . . . . . .There. . . . .are. .a. . . . . . . . . . .number. . .of. . . . . . . . . .smaller. . . . . . . .boats
. . .in . . . . . . .front,. . . . . .one . . .of. . . . . . .them. . . . . . . . .flying . .a . . . . . . . . . . .Turkish . . . . . .flag.

Q11

A sequence of three shots: two people and a wall with posters, a balcony with laundry hanging on a rope
and a train passing behind two standing tombstones. In the first shot, a person is standing around a corner
of the wall on the right, the other person walks away to the left. . . .In. . . . .the . . . . .last. . . . . . .shot,. . . . . . .there. . .is. .a. . . . . . . .fence. . . . . . . . . . .between. . . . .the
. . . . . . . . . . . . .graveyard . . . . .and. . . . .the. . . . . . . . . . .railway . . . . . .line, . . . . .and. . . . .the. . . . . .roof. . .of. . .a . . . . . . . . . . .building. . .is . . . . . . . . .visible . . . . . . . . .behind. . . . .the. . . . . . . . . . .railway . . . . . .line.

Q12
View down the surface of a boulder, with a forest in the background. A bearded man in a cyan shirt climbing
up the boulder. . .It . . .is . . . . . . . . .sunny, . . . . .and. . . . .we . . . . .see . . . . .the . . . . . . . .man’s. . . . . . . . . . .shadow . . . .on . .a . . . . . . . . . .smaller . . . . . . . . . .boulder. . . .on. . . . .the. . . . . . . .right.. . . . . .The . . . . . .man. . . . . . . .wears
. . . . . . . . .gloves, . . . . .but . . . . . .does. . . . .not. . . . .use. . . . . .any. . . . . . . .ropes.

Q13 View down from the helmet camera of a mountain biker, as he spins around on a path along a narrow ridge.
He spins by jumping on the back wheel. . . . . .The. . . . . . .ridge. . .is. . . . . . . . . .flanked. . . .by. . . . . .sea. . . . . .We . . . . . .hear. . . . .the. . . . . . .biker. . . . . . . . . . . . .narrating. . . . .the . . . . . . . .scene.

Q14 A girl and a man run up a small hill. There is a flagpole with a Canadian flag on top. . . . . . . . .There . . . .are. . . . . . . . . . . . . . . . .white/green
. . . . . . . . . . .benches,. .a. . . . . . . . . . . . .lamppost . . . . .and. . . . . . . .stairs . . . .up. . . . .the . . . . .hill.. . . . . .The. . . . . . . . . . .flagpole. . .is . . . .on. . . . .top. . .of. .a. . . . . . . .stone. . . . . . . . . . . .structure. . . . . . .with. .a. . . . . . . . . . .cannon.

Q15 A herd of donkeys/mules are walking down a walkway with steps, followed by a herdsman. The animals are
saddled, with blankets in different color. . . . . .The. . . . . . . . . . . . .herdsman. . . . . . . . .wears . .a . . . . . . . . .bonnet. . . . . .and. . . . . . . . .carries. .a. . . . . . . .stick.

Q16
A man, leaning forward, looks back over his shoulder, where a smiling bride is walking towards him. The
bride puts her arm around his neck. . . . . .The. . . . . . . .scene. . .is. . . . . . . . . . . . .outdoors, . . . . .the . . . . . .man. . . . . . . .wears. . .a . . . . . . . . .striped. . . . . . . .shirt, . . . . . . .black. . . . . . . .jacket. . . . . .and
. . . . . . . . .glasses . . . . . . .with . . . . . . . . . . . . . .black/gray . . . . . . . . .frame.

Q17
We see a girl in a dark dress pushing the door of a convenience store, after it closes, she runs away. There
are two bikes and four trash cans in front of the shop windows. . . . . .The . . . . . . . . .store’s . . . . . . . .brand. . . . . . . .colors. . . . .are. . . . . . . . .green, . . . . . . . .white
. . . . .and . . . . . . .blue.
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